This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090

Crystal structure of 4'-pentyl-4-cyanobiphenyl (5CB)

T. Hanemanna ${ }^{\text {a }}$ W. Haase ${ }^{\text {b } ; ~ I . ~ S v o b o d a c ~}{ }^{\text {c }}$; H. Fuess ${ }^{\text {c }}$
${ }^{\text {a }}$ Forschungszentrum Karlsruhe GmbH, Institut fur Materialforschung III, Karlsruhe, Germany ${ }^{\text {b }}$ Institut fur Physikalische Chemie, Technische Hochschule Darmstadt, Darmstadt, Germany ${ }^{\text {c }}$ Fachbereich Materialwissenschaft, Fachgebeit Strukturforschung Technische Hochschule Darmstadt, Darmstadt, Germany

To cite this Article Hanemann, T. , Haase, W. , Svoboda, I. and Fuess, H.(1995) 'Crystal structure of 4'-pentyl-4cyanobiphenyl (5CB)', Liquid Crystals, 19: 5, $699-702$
To link to this Article: DOI: 10.1080/02678299508031086
URL: http://dx.doi.org/10.1080/02678299508031086

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Crystal structure of 4'-pentyl-4-cyanobiphenyl (5CB)

by T. HANEMANN*, W. HAASE \dagger, I. SVOBODA \ddagger and H. FUESS \ddagger
Forschungszentrum Karlsruhe GmbH, Institut fur Materialforschung III, Postfach 3640, 76021 Karlsruhe, Germany
\dagger Institut fur Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstraße 20, 64287 Darmstadt, Germany
\ddagger Fachbereich Materialwissenschaft, Fachgebeit Strukturforschung Technische
Hochschule Darmstadt, Petersenstraße 20, 64287 Darmstadt, Germany

(Received 26 May 1995; accepted 14 July 1995)

Abstract

The crystal structure and the molecular arrangement of 4'-pentyl-4-cyanobiphenyl (5CB) at 253 K are described. At 253 K the compound crystallized from pure ethanol as plates, as well as fine needles, both colourless. The crystal data for both crystal habits are within experimental error identical. The data for the plates were measured as: $a=8.249(5) \AA, b=16.022(4) \AA$, $c=10.935(3) \AA \beta=95-09(3)^{\circ}$, space group $\mathrm{P}_{1} /$ a. Considering 2014 independent reflections, the structure was refined to a final R value of 0.0588 . In the case of the needles, with 1892 independent reflections, R converged to 0.0503 . The torsion angle between the normals of the benzene rings in the biphenyl moiety was $-26.3(3)^{\circ}$. Within the aliphatic chain an all-trans conformation was given, but the orientation of the pentyl group relative to the plane of the attached aromatic ring was nearly vertical ($-90.5(3)^{\circ}$). The structure obtained is discussed in comparison with the lower homologues 1 CB up to 4 CB .

1. Introduction

4'-Pentyl-4-cyanobiphenyl (5CB) has been one of the most investigated liquid crystal materials due to its readily accessible nematic range around room temperature which allows for its use as a suitable model compound for studying the physical behaviour of simple nematics [1-3]. The polar structure containing a cyano group attached to one benzene ring gives rise to a strong dipolar association and dimer formation in the mesophase which can be determined using X-ray measurements, magnetic resonance techniques and-for the higher homologues 7CB12 CB -scanning tunnelling microscopy [4-6]. The crystal structures of the lower homologues (1CB-4CB) are known [7-9], one of them showing solid state polymorphism. The aim of this work was the clarification of the phase behaviour and the structure determination of solid 5CB.

2. Experimental

5CB, first synthesized and reported by Gray, Harrison and Nash in 1973 [10], was obtained from E. Merck, Darmstadt. It was used without further purification and dissolved in pure ethanol. The solution was stored at 253 K in a refrigerator and after a short time fine needles formed. Holding the mixture for a longer period at this tempera-

[^0]ture, the needles grew, forming large plates. DSC measurements (Dupont Thermal Analyser 990) and polarizing thermomicroscopy (Leitz Orthoplan Pol, Mettler FP 800), yielded the following phase behaviour for the investigated batch of 5CB: Cr 294.0 N 306.7 I [K].

After quenching the isotropic phase with liquid nitrogen down to 173 K and reheating again to ambient temperature, an unstable metaphase appeared with an exothermal peak at 232 K . Moderate cooling rates suppressed the formation of the metaphase.

A colourless plate with the dimensions $1.00 \times 1.00 \times 0.20 \mathrm{~mm}$ was taken to determine the crystal structure at 253 K . To avoid partial melting, any kind of sample preparation had to be carried out at 253 K under a CO_{2} atmosphere, and the temperature during the measurements was controlled by a continuous flux of cooled nitrogen. For comparison, a freshly crystallized, small, colourless needle ($1.15 \times 0.30 \times 0.20 \mathrm{~mm}$) was examined under the same conditions. X-ray diffraction (EnrafNonius CAD4, Stoe Stadi 4), using MoK ${ }_{\alpha}$ radiation at a wavelength of $0.71069 \AA$, was performed to characterize the solid state phase. The program packages SHELXS-86 and SHELXL-93 allowed structure solution and refinement [11, 12], and the hydrogen atom positions were calculated. The refinement procedures converged at $R=0.0588$ (plate) and 0.0503 (needle), respectively. In the following text, only the results for the plate habit are

Table 1. Basic crystal data and structure refinement.

	5CB-Plate
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}$
Formula weight/g mol ${ }^{-1}$	249.34
Temperature/K	253
Crystal system	Monoclinic
Space group	P2/a
a/A	8.249(5)
b / A	16.022(4)
c/A	10.935(3)
$\beta{ }^{\circ}$	95.09(3)
V / \AA^{3}	1439.5(10)
Z	4
Calculated density/g cm ${ }^{3}$	1.150
Crystal size/mm	$1.00 \times 1.00 \times 0.20$
Absorption coefficient $\mu_{\mathrm{MoK}_{x}} / \mathrm{cm}^{-1}$	0.66
$F(000)$	536
Number of measured reflections	2413
Number of independent reflections	2014
Final R index $\left[\mathrm{I}_{\text {obs }}>2 \sigma(I)\right]$	0.0588
Final $R_{\text {W }}$ index	0.1514
S	1.081

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(A^{2} \times 10^{3}\right) . U(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Atom	x / \AA	y / \AA	z / \AA	$U(\mathrm{eq})$
$\mathrm{N}(1)$	$-6040(3)$	$8759(2)$	$3059(2)$	$91(1)$
$\mathrm{C}(1)$	$-4777(4)$	$8777(2)$	$3583(3)$	$67(1)$
$\mathrm{C}(2)$	$-3206(3)$	$8807(2)$	$4260(2)$	$56(1)$
$\mathrm{C}(3)$	$-1862(3)$	$8433(2)$	$3815(2)$	$61(1)$
$\mathrm{C}(4)$	$-375(3)$	$8467(1)$	$4477(2)$	$58(1)$
$\mathrm{C}(5)$	$-160(3)$	$8862(1)$	$5618(2)$	$49(1)$
$\mathrm{C}(6)$	$-1526(3)$	$9242(1)$	$6036(2)$	$57(1)$
$\mathrm{C}(7)$	$-3017(3)$	$9220(2)$	$5378(2)$	$59(1)$
$\mathrm{C}(8)$	$1421(3)$	$8891(1)$	$6370(2)$	$49(1)$
$\mathrm{C}(9)$	$2567(3)$	$8234(2)$	$6273(2)$	$57(1)$
$\mathrm{C}(10)$	$4019(3)$	$8228(2)$	$6999(2)$	$61(1)$
$\mathrm{C}(11)$	$4413(3)$	$8846(1)$	$7861(2)$	$55(1)$
$\mathrm{C}(12)$	$3280(3)$	$9472(2)$	$7953(2)$	$60(1)$
$\mathrm{C}(13)$	$1828(3)$	$9481(1)$	$7235(2)$	$58(1)$
$\mathrm{C}(14)$	$5979(3)$	$8834(2)$	$8674(2)$	$66(1)$
$\mathrm{C}(15)$	$5864(3)$	$8382(2)$	$9880(2)$	$64(1)$
$\mathrm{C}(16)$	$5680(3)$	$7438(2)$	$9719(2)$	$70(1)$
$\mathrm{C}(17)$	$5794(4)$	$6967(2)$	$10888(3)$	$79(1)$
$\mathrm{C}(18)$	$5656(4)$	$6037(2)$	$10729(3)$	$83(1)$

presented; the basic crystal data are listed in table 1, and the atomic coordinates and displacement parameters in table 2.

3. Results and discussion

The structure and the labelling used for a single molecule of 5 CB are given in figure 1 . In contrast to most analogous molecules, the aliphatic chain is oriented

Figure 1. Perspective view of 5CB, indicating the numbering scheme, projection on the benzene ring with carbon atoms C2 to C7.
approximately perpendicular to the plane of the attached benzene ring (torsion angle: $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 14-\mathrm{Cl}$: $\left.-90.3(3)^{\circ}\right)$. The conformation within the pentyl chain is all-trans, but due to the aromatic ring on one side, a gauche conformation of the planes defined by the bonds C11-C14 and C15-C16 with a dihedral angle of $-70.4(3)^{\circ}$ was found. The torsion angle between the normals of the two benzene amounted to $-26.3(3)^{\circ}$, quite similar to the value obtained for pure biphenyl obtained from SCF-LCAOMO and force field calculations ($\varphi \approx 26^{\circ}$) [13]. Following deuteron NMR studies on the nematic phase of 5 CB , the torsion angle was found to be 32° [4].

Table 3 compares the first homologues $1 \mathrm{CB}-4 \mathrm{CB}$ of the series with 5 CB , all in the solid state. Generally speaking, the basic crystallographic data for the homologues are rather similar. With the exception of the high temperature phase of 2 CB , all crystallize monoclinic in a centrosymmetric space group, with the monoclinic β angle close to 95°, except in the case of 3 CB and 4 CB for which the β values were larger at $103.39(2)^{\circ}$ and $123.4(3)^{\circ}$, respectively $[8,9]$. The volume of the elementary cell divided by the number of contained molecules increased with increasing length of the aliphatic chain. Within the range of five homologues, no systematic change in the torsion angle between the aromatic moieties was observed, and in the case of the two solid state phases of 2 CB , the aromatic rings of the biphenyl group were approximately coplanar, with negligible twist angles of 0.7° and 1.5°, due to packing effects in the lattice.

The molecular packing of 5CB in the crystalline state is shown in figures 2, 3, and 4 with projections along the a, b, and c axes of the elementary cell. At first sight, the molecular arrangement estimated from the images (see figures 2-4) seemed not to be unique. Following the projections along the a and b axes, a layered structure could be assumed, quite similar to that in the STM-images of higher homologues [5]. Figure 2 suggests an alternating arrangement of bilayers, with two parallel oriented molecules within one layer, the orientation of two neighbouring bilayers seeming to be antiparallel. Figure 3 , with the projection along the b axis, indicates a strong parallel orientation within and between the different layers. Figure 4, with the projection along the c axis does

Table 3. Comparison of 5 CB with the homologues $1 \mathrm{CB}-4 \mathrm{CB}$; 2CB shows solid state polymorphism. The numbering scheme used is as in figures 1,2 and $4\left(^{\prime}\right.$: next neighbour molecule).

	ICB [7]	2CB [7]		3 CB [8]	4 CB [9]	5CB, this work
Space group	$\mathrm{P}_{2} / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{c}$	P2 ${ }_{1}$	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} \mathbf{1}_{1} / \mathrm{c}$	$\mathrm{P}_{1} / \mathrm{a}$
Z	8	4	2	4	4	4
T/K	296	223	298	298	298	253
a / \AA Å	15.71(8)	8.24(1)	8.589(2)	6.259(3)	12.198(9)	8.249(2)
b/Å	14.38(8)	5.94(1)	5.864(1)	$19.1216(9)$	9.204(8)	16.022(4)
c / A	9.61 (6)	23.15(2)	11.835 (3)	11.0473(5)	14.746(9)	10.935(3)
$\beta 1^{\circ}$	95.0(2)	92.93(1)	92.41(1)	103.39(2)	123.4(3)	95.09(3)
V / A^{3}	$2: 171.0$	1156.3	595.55	$1286 \cdot 2$	1382.5	1439.5(1)
d / gcm^{-3}	1.188	1-191	$1 \cdot 156$	$1 \cdot 142$	1.130	1.150
Twist angle ${ }^{\circ}$	-	$0 \cdot 7$	1.5	$42 \cdot 8$	40.5	-26.3
Selected	-	3.35,3.57	$3 \cdot 55$	$4 \cdot 19$ (C1C3')	3.45 ($\mathrm{N1Cl}^{\prime}$)	antiparallel:
distances/A		$2 \times\left(\mathrm{NiCl}^{\prime}\right)$	($\mathrm{NiCl}{ }^{\prime}$)	3.95 (C1C4')	$3 \cdot 55$ (N1C13')	3.55 (C1C12')
						3.86 (C1C13')
						parallel:
						3.95 ($\mathrm{ClC3}^{\prime}$)
						3.77 ($\mathrm{ClC4} 4^{\prime}$)

not allow for an unequivocal description, and again, as in figure 2, two antiparallel oriented bilayers are present in the elementary cell.

Other cyanobiphenyl homologues (2CB [7] and 4CB [9]) show a tendency to form associates with an antiparallel arrangement and a small cyano-cyano distance around $3.5 \AA$ (see table 3). A more careful analysis of the X-ray data yielded the following measured intermolecular distances between one cyano group and the closest benzene ring in the next layer: in the case of antiparallel oriented molecules, the neighbouring carbon atoms ($\mathrm{C} 12^{\prime}$ and $\mathrm{C} 13^{\prime}$) of the aromatic ring attached to the pentyl chain were $3.55 \AA$ and $3.86 \AA$ apart (see table $3: \mathrm{C} 1 \mathrm{C} 12^{\prime}$ and C1C13'). The corresponding values for parallel packed molecules were $3.95 \AA$ and $3.77 \AA$, considering the

Figure 2. Crystal structure of 5CB; projection along [100].
distance to the aromatic ring attached to the cyano group (see table 3: $\mathrm{C} 1 \mathrm{C} 3^{\prime}$ and $\mathrm{C1C4}$ '); all notations follow the scheme used in figures 1,2 and 4 , the prime on the atom number representing the next neighbouring molecule. Hence the next antiparallel oriented layer is slightly closer than the parallel oriented layer in the given lattice at 253 K , and therefore 5CB has an analogous behaviour to that of the higher homologues.

The intermolecular distances in 5CB are in the range of real dipole-dipole contact, so that the given lattice with the layered structure could be treated as a precursor state to the nematic phase, as for the other homologues and simulated by Luckhurst et al., on the basis of the

Figure 3. Crystal structure of 5 CB ; projection along [010], with half height for better clearness.

Figure 4. Crystal structure of 5CB; projection along [0 011].
Gay-Berne potential including attractive, as well as repulsive forces between the molecular dipoles [14]. These authors considered that in the case of the crystalline state a perfect order of the elongated molecules would exist, with a calculated orientational order of 0.98 , and obtained for the nematic phase 0.41 . In the case here, the structure of 5CB has been folded, but a layer structure as
a potential mesogenic arrangement is still present. Therefore the results are in agreement with the simulation studies and the other CBs, despite the unusual orientation of the pentyl group with respect to the aromatic part.

This work was done at the Technischen Hochschule in Darmstadt.

References

[1] Seo, D.-S., Matsuda, H., Oh-Ide, T., and Kobayashi, S., 1993, Molec. Crystals liq. Crystals, 224, 13.
[2] Bauman, D., 1988, Molec. Crystals liq. Crystals, 172, 41.
[3] Hanemann, T., and Haase, W., 1994, Ber. Bunsenges. phys. Chem., 98, 596.
[4] Sinton, S., and Pines, A., 1980, Chem. Phys. Lett., 76, 263.
[5] Iwakabe, Y., Hara, M., Kondo, K., Tochigi, K., Mukoh, A., Yamada, A., Garito, A. F., and Sasabe, H., 1991, Japan J. appl. Phys., 10, 2542.
[6] Frommer, J., 1993, Liq. Crystals Today, 3, 1.
[7] Haase, W., Loub, J., and Paulus, H., 1992, Z. Kristallogr., 202, 7.
[8] Haase, W., Paulus, H., and Pendzialek, R., 1983, Molec. Crystals liq. Crystals, 100, 211.
$[9]$ Vani, G. V., 1983, Molec. Crystals liq. Crystals, 99, 21.
[10] Gray, G. W., Harrison, K. J., Nash, J. A., Constant, J., Hulme, D. S., Kirton, J., and Raynes, E. D., 1973, Proceedings of 166th National ACS Meeting on Ordered Fluids and Liquid Crystals, Chicago, USA, p. 617.
[11] Sheldrick, G. M., 1990, SHELXS-86 program for crystal structure determination, University of Göttingen, Germany.
[12] Sheldrick, G. M., 1993, SHELXL-93 program for crystal structure determination, University of Göttingen, Germany.
[13] Lindner, H. J., 1974, Tetrahedron, 30, 1127.
[14] Luckhurst, G. R., Stephens, R. A., and Phippen, R. W., 1990, Liq. Crystals, 8, 451.

[^0]: * Author for correspondence.

